

LA-UR-21-30404

Approved for public release; distribution is unlimited.

Title: Exotic hadrons in dense QCD systems

Author(s): Durham, J. Matthew

Intended for: colloquium presentation at Florida State University

Issued: 2021-10-20

Exotic hadrons in dense QCD systems

Matt Durham durham@lanl.gov

Florida State Colloquium 14 Oct 2021

Outline

- Conventional quarkonium Q ar Q bound states
 - Simple quantum mechanical system
 - Interactions with a hadronic medium
- Exotic quarkonium multiquark states
 - Few examples
 - Detailed look at X(3872) and T_{cc}^+ in medium
- Outlook: future measurements
 - Fixed-target collisions at the LHC
 - Electron-Ion Collider

Outline

- Conventional quarkonium $Q \bar Q$ bound states
 - Simple quantum mechanical system
 - Interactions with a hadronic medium
- Exotic quarkonium multiquark states
 - Few examples
 - Detailed look at X(3872) and T_{cc}^+ in medium
- Outlook: future measurements
 - Fixed-target collisions at the LHC
 - Electron-Ion Collider

Quark Model of Hadrons

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

AN SU₃ MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELI - MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{1}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as ''quarks'' 6) q and the members of the anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \bar{q}) similarly gives just 1 and 8.

G.Zweig *)

8182/TH. 401 17 January 1964

CERN - Geneva

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from ĀAAAA, ĀĀAAAAA, etc., where Ā denotes an anti-ace. Similarly, mesons could be formed from ĀA, ĀĀAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, ĀA and AAA, that is, "deuces and treys".

Quark Model of Hadrons

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

SU3 MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{1}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as ''quarks'' 6) q and the members of the anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \bar{q}) similarly gives just 1 and 8.

G.Zweig *)
CERN - Geneva

8182/TH.401 17 January 1964

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAAA, otc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA btc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

Mesons: $q\bar{q}$, $qq\bar{q}\bar{q}$, $qqq\bar{q}\bar{q}\bar{q}$, ...

Baryons: qqq, $qqqq\bar{q}$, $qqqqq\bar{q}\bar{q}$, ...

Hadrons with >3 quarks have been expected since the very beginning.

Heavy quarks: charm and bottom Mass $\gg \Lambda_{QCD}$, perturbative methods applicable Not present in incoming beam particles

Electron-positron colliders (B factories)

$$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$$

Heavy quarks: charm and bottom Mass $\gg \Lambda_{QCD}$, perturbative methods applicable Not present in incoming beam particles

Electron-positron colliders (B factories)

Heavy quarks: charm and bottom Mass $\gg \Lambda_{QCD}$, perturbative methods applicable Not present in incoming beam particles

Electron-positron colliders (B factories)

Hadron colliders (e.g. RHIC, Tevatron, LHC)

- High \sqrt{s} , large total cross section
- Access to wide range of states
- Initial state (parton+parton) not entirely constrained
- Interactions among produced particles become important

Heavy quarks: charm and bottom Mass $\gg \Lambda_{QCD}$, perturbative methods applicable Not present in incoming beam particles

Electron-positron colliders (B factories)

Hadron colliders (e.g. RHIC, Tevatron, LHC)

Heavy quarks: charm and bottom Mass $\gg \Lambda_{QCD}$, perturbative methods applicable Not present in incoming beam particles

Solve Schrodinger equation with the potential

$$V_0^{(c\bar{c})}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\tilde{\delta}_{\sigma}(r)\vec{S}_c \cdot \vec{S}_{\bar{c}}$$

Phys. Rev. D 72, 054026 (2005)

Solve Schrodinger equation with the potential

Solve Schrodinger equation with the potential
$$\sum_{\underline{S}} V_0^{(c\bar{c})}(r) = -\frac{4}{3} \frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2} \tilde{\delta}_{\sigma}(r) \vec{S}_c \cdot \vec{S}_{\bar{c}} \overset{\text{se}}{\approx}$$

Phys. Rev. D 72, 054026 (2005)

The most recently discovered charmonium state: $\psi_3(1^3D_3)$

Measured mass: $3842.71 \pm 0.16 \pm 0.12 \text{ MeV}$

Predicted mass: 3849 MeV

The most recently discovered charmonium state: $\psi_3(1^3D_3)$

Measured mass: $3842.71 \pm 0.16 \pm 0.12$ MeV

Predicted mass: 3849 MeV

Incredibly rich structure, accessible theoretically and experimentally

The QCD medium

Diffuse medium (pp,pA)

Increasing T, N_{charged} Dense medium (pA, AA)

• Use (mostly) understood quarkonia states to as a calibrated probe of non-perturbative effects in dense many-body hadronic systems.

Relatively *low* particle density

Comover breakup:

 Weakly bound states interact with other produced particles and are disrupted preferentially more than tightly bound states

> Phys. Lett. B, 393(3):431, (1997) Phys. Rev. Lett., 78:1006–1009 (1997) Phys. Lett. B, 749:98, (2015) Phys. Rev. C, 97:014909 (2018) JHEP, 2018(10):94 (2018)

Comover breakup:

 Weakly bound states interact with other produced particles and are disrupted preferentially more than tightly bound states

> Phys. Lett. B, 393(3):431, (1997) Phys. Rev. Lett., 78:1006–1009 (1997) Phys. Lett. B, 749:98, (2015) Phys. Rev. C, 97:014909 (2018) JHEP, 2018(10):94 (2018)

Comover breakup:

 Weakly bound states interact with other produced particles and are disrupted preferentially more than tightly bound states

> Phys. Lett. B, 393(3):431, (1997) Phys. Rev. Lett., 78:1006–1009 (1997) Phys. Lett. B, 749:98, (2015) Phys. Rev. C, 97:014909 (2018) JHEP, 2018(10):94 (2018)

Effect is sensitive to size of bound state and density of medium

Deuteron production in the QCD medium

Deuteron: weakly bound state of neutron and proton, $E_b \approx 2 \, MeV$

Deuteron production in the QCD medium

Deuteron: weakly bound state of neutron and proton, $E_b \approx 2 \, MeV$

Production relative to protons increases with system density:

Well described by coalescence models.

Outline

- Conventional quarkonium $Q \overline{Q}$ bound states
 - Simple quantum mechanical system
 - Interactions with a hadronic medium
- Exotic quarkonium multiquark states
 - Few examples
 - Detailed look at X(3872) and T_{cc}^+ in medium
- Outlook: future measurements
 - Fixed-target collisions at the LHC
 - Electron-Ion Collider

We have identified effects that depend on binding energy/radius of state and QCD medium properties

Outline

- Conventional quarkonium $Q\bar{Q}$ bound states
 - Simple quantum mechanical system
 - Interactions with a hadronic medium
- Exotic quarkonium multiquark states
 - Few examples
 - Detailed look at X(3872) and T_{cc}^+ in medium
- Outlook: future measurements
 - Fixed-target collisions at the LHC
 - Electron-Ion Collider

Exotic hadrons

Exotic hadrons

Rev. Mod. Phys. 90, 015003 (2018)

20+ states containing heavy quarks have been discovered since 2003 that do not fit typical quarkonium properties:

Collectively known as "XYZ" particles

Exotic hadrons

Rev. Mod. Phys. 90, 015003 (2018)

20+ states containing heavy quarks have been discovered since 2003 that do not fit typical quarkonium properties:

Collectively known as "XYZ" particles

Compact

tetraquark/pentaquark

Diquark-diquarkPRD 71, 014028 (2005)
PLB 662 424 (2008)

Hadrocharmonium/ adjoint charmonium PLB 666 344 (2008) PLB 671 82 (2009)

Exotic hadrons

Rev. Mod. Phys. 90, 015003 (2018)

20+ states containing heavy quarks have been discovered since 2003 that do not fit typical quarkonium properties:

Collectively known as "XYZ" particles

Compact

tetraquark/pentaquark

Diquark-diquark *PRD 71, 014028 (2005) PLB 662 424 (2008)*

Hadrocharmonium/ adjoint charmonium PLB 666 344 (2008) PLB 671 82 (2009)

Hadronic Molecule

PRD 77 014029 (2008) PRD 100 0115029(R) (2019)

Exotic hadrons

4800

Rev. Mod. Phys. 90, 015003 (2018)

20+ states containing heavy quarks have been discovered since 2003 that do not fit typical quarkonium properties:

Collectively known as "XYZ" particles

Compact

tetraquark/pentaquark

Diquark-diquark PRD 71, 014028 (2005) PLB 662 424 (2008)

Hadrocharmonium/ adjoint charmonium PLB 666 344 (2008) PLB 671 82 (2009)

Hadronic Molecule

Y(4660) Z+(4250) Mass [MeV] Z*(4050) D*D* 3800 3600 3400 3200 3000 2 & other

Mixtures of exotic + conventional states

$$X = a |c\bar{c}\rangle + b |c\bar{c}q\bar{q}\rangle$$

PLB 578 365 (2004) PRD 96 074014 (2017)

Exotic hadrons

Rev. Mod. Phys. 90, 015003 (2018)

20+ states containing heavy quarks have been discovered since 2003 that do not fit typical quarkonium properties: Collectively known as "XYZ" particles

Compact

tetraquark/pentaquark

Diquark-diquark PRD 71, 014028 (2005) PLB 662 424 (2008)

Hadrocharmonium/ adjoint charmonium PLB 666 344 (2008) PLB 671 82 (2009)

Hadronic Molecule

PRD 100 0115029(R) (2019)

Mixtures of exotic + conventional states

$$X = a |c\bar{c}\rangle + b |c\bar{c}q\bar{q}\rangle$$

PLB 578 365 (2004) PRD 96 074014 (2017)

Multiple structures likely necessary to fully describe all states and their properties

Example: P_c^{\pm} pentaquarks

Select daughters from the decay

$$\Lambda_b^0 \to J/\psi p K^-$$

Example: P_c^{\pm} pentaquarks

Select daughters from the decay

$$\Lambda_b^0 \to J/\psi p K^-$$

Example: P_c^{\pm} pentaquarks

Select daughters from the decay

Masses are close to meson+baryon thresholds – candidate hadronic molecule

Example: Charged Tetraquark: Z_c^{\pm}

Select daughters from the decay

$$B^0 \rightarrow \psi(2S)K^+\pi^-$$

Example: Charged Tetraquark: Z_c^{\pm}

$$B^0 \to \psi(2S)K^{\dagger}\pi^{-}$$

Example: Charged Tetraquark: Z_c^{\pm}

Select daughters from the decay

$$B^0 \to \psi(2S)K^{\dagger}\pi^-$$

Charged and contains $c\overline{c}$ pair: minimal quark content $c\overline{c}q\overline{q}$

Mass not close to hadron+hadron threshold – candidate compact tetraquark

The first exotic hadron, discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003

- The first exotic hadron, discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003
- LHCb measured quantum numbers (PRL 110 222001 2013)
 - Incompatible with expected charmonium states

- The first exotic hadron, discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003
- LHCb measured quantum numbers (PRL 110 222001 2013)
 - Incompatible with expected charmonium states
- Mass is consistent with sum of \mathbf{D}^0 and $\overline{\mathbf{D}}^{*0}$ masses:

$$(M_{D^0} + M_{\bar{D}^{*0}}) - M_{\chi_{c1}(3872)} = 0.07 \pm 0.12 \text{ MeV}/c^2$$

VERY small binding energy VERY large radius, ~10 fm

 $M(\pi^{\dagger}\pi^{\dagger}I^{\dagger}I^{\dagger}) - M(I^{\dagger}I^{\dagger})$ (GeV)

*Tension in theoretical literature: c.f. Bignamini, Grinstein et al PRL 103 162001 (2009) Artoisenet, Braaten PRD 81 114018 (2010)

- The first exotic hadron, discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003
 - LHCb measured quantum numbers (PRL 110 222001 2013)
 - Incompatible with expected charmonium states
- Mass is consistent with sum of \mathbf{D}^0 and $\overline{\mathbf{D}}^{*0}$ masses:

$$(M_{D^0} + M_{\bar{D}^{*0}}) - M_{\chi_{c1}(3872)} = 0.07 \pm 0.12 \text{ MeV}/c^2$$

 Large prompt production fraction (~80%) – inconsistent with D meson coalescence in pp*

VERY small binding energy VERY large radius, ~10 fm

Compact tetraquark

Tightly bound via color exchange between diquarks *Small* radius, ~1 fm

Events/0.010 GeV

Probing exotic structure with comovers at LHCb

 $X(3872) \to I/\psi \pi^+ \pi^-$

Vertex detector (VELO):

- -Separation of prompt and **b**-decay production
- -Number of VELO tracks gives measure of event activity

Two RICH detectors:

-Pion identification

Muon System:

- -Layers of absorber/tracking
- -Muon hardware trigger

Probing exotic structure with comovers at LHCb

Prompt production:

- X(3872) produced at collision vertex can be subject to further interactions with co-moving particles produced in the event
- Potentially subject to breakup effects

Production in **b**-decays:

- Hadrons containing **b** travel down the beampipe and decay away from the primary vertex and decay in vacuum
- X(3872) from decays not subject to further interactions
- Control sample

Event display of $B_s^0 \rightarrow \mu^+\mu^-$ candidate

X(3872) measurement at LHCb

Reconstruct the $\mu^+\mu^-\pi^+\pi^-$ final state from the decays:

$$X(3872) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\rho(\rightarrow \pi^+\pi^-)$$

$$\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$$

Direct comparison between conventional charmonium $\psi(2S)$ and exotic X(3872) via ratio of cross sections:

$$\frac{\sigma_{\chi_{c1}(3872)}}{\sigma_{\psi(2S)}} \times \frac{\mathcal{B}[\chi_{c1}(3872) \to J/\psi \, \pi^+ \pi^-]}{\mathcal{B}[\psi(2S) \to J/\psi \, \pi^+ \pi^-]}$$

Select collisions of various charged particle multiplicity to vary density of comoving medium

$X(3872)/\psi(2S)$ vs multiplicity

Prompt component:

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

Prompt component:

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by **b** decay branching ratios.

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Prompt component:

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by **b** decay branching ratios.

Calculations from EPJ C 81, 669 (2021)

Break-up cross section:

$$\langle v\sigma\rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c}\right)^n \right\rangle$$

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Coalescence of D mesons into molecular X(3872) increases ratio

Prompt component:

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by **b** decay branching ratios.

Calculations from EPJ C 81, 669 (2021)

Break-up cross section:

$$\langle v\sigma\rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c}\right)^n \right\rangle$$

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Coalescence of D mesons into molecular X(3872) increases ratio

Prompt component:

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by **b** decay branching ratios.

Calculations from EPJ C 81, 669 (2021)

Break-up cross section:

$$\langle v\sigma \rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c}\right)^n \right\rangle$$

Compact tetraquark of size 1.3 fm gradually dissociated as multiplicity increases – consistent with data

DOE NP highlight

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Coalescence of D mesons into molecular X(3872) increases ratio

Compact tetraquark of size 1.3 fm gradually dissociated as multiplicity increases

Comover model: constituent interaction

Different method of calculating breakup cross section:

Braaten, He Ingles, Jiang Phys. Rev. D 103, 071901 (2021)

Breakup cross section approximated as sum of cross section for molecule constituents:

$$\sigma^{
m incl}[\pi X] pprox rac{1}{2} (\sigma[\pi D^0] + \sigma[\pi ar{D}^0] + \sigma[\pi D^{*0}] + \sigma[\pi ar{D}^{*0}])$$

Data is consistent with this molecular interpretation.

Comover model: constituent interaction

Different method of calculating breakup cross section:

Braaten, He Ingles, Jiang Phys. Rev. D 103, 071901 (2021)

Breakup cross section approximated as sum of cross section for molecule constituents:

$$\sigma^{
m incl}[\pi X] pprox rac{1}{2} (\sigma[\pi D^0] + \sigma[\pi ar{D}^0] + \sigma[\pi D^{*0}] + \sigma[\pi ar{D}^{*0}])$$

Data is consistent with this molecular interpretation.

If breakup is due to scattering of individual constituents, would all $c\bar{c}$ have equal suppression? Not observed in charmonium or bottomonium systems.

Newest LHCb exotic: T_{cc}^+

New state consistent with $cc\bar{u}\bar{d}$ tetraquark recently found:

Similar to X(3872), mass quite close to DD threshold Big difference: contains cc or $\bar{c}\bar{c}$, rather than $c\bar{c}$

Newest LHCb exotic: T_{cc}^+

New state consistent with $cc\bar{u}\bar{d}$ tetraquark recently found:

Similar to X(3872), mass quite close to DD threshold Big difference: contains cc or $c\bar{c}$, rather than $c\bar{c}$

Yield favors higher multiplicity collisions, reminiscent of deuteron.

Evidence for hadronic molecule structure?

New Particles at the LHC

https://www.nikhef.nl/~pkoppenb/particles.html

Outline

- Conventional quarkonium $Q\bar{Q}$ bound states
 - Simple quantum mechanical system
 - Interactions with a hadronic medium
- Exotic quarkonium multiquark states
 - Few examples
 - Detailed look at X(3872) and T_{cc}^+ in medium
- Outlook: future measurements
 - Fixed-target collisions at the LHC
 - Electron-Ion Collider

Fixed target configuration - SMOG

System for Measurement of Overlap with Gas
A unique capability at LHCb: inject noble gas into beampipe
Originally intended for precise luminosity measurements:
Precision on 2012 pp data is ±1.16%, best ever at bunched beam collider
JINST 9 P12005 (2014)

Measurements so far: Charm production in p+He and p+Ar: PRL 122 132002 (2019) Antiproton production in p+He: PRL 121 222001 (2018)

Near future: SMOG II at LHCb

https://cds.cern.ch/record/2673690/files/LHCB-TDR-020.pdf

Example SMOG2 pAr at 115 GeV for one year

Int. Lum	ni.	80 pb ⁻¹
Sys.erro J/Ψ D^0 Λ_c	or of J/Y xsection yield yield yield	~3% 28 M 280 M 2.8 M
Ψ' Υ(1S)	yield yield	280 k 24 k
$DY \mu^+\mu$	yield	24 k

- Upgraded SMOG 2 system at LHCb allows greatly increased rates of beam+gas collisions at LHCb
- Variable target gases allows hadronic environment to be adjusted (H, He, ..., Xe)
- Access to exotic states near RHIC energies
- Can potentially run concurrent with proton+proton collisions large data sets

SMOG II installed at LHCb

Future facility: Electron-Ion Collider

EIC site selection at BNL announced Jan 2020, CD-1 July 2021, operational ~2030

$$\sqrt{s} \sim 20 - 100 \text{ GeV}$$

e+p, e+O, e+Al, e+Cu, e+Au, e+U,...

Charm production inside the nucleus probes:

- Parton structure of nucleons
- Parton distribution function modifications
- QCD energy loss

Future facility: Electron-Ion Collider

EIC site selection at BNL announced Jan 2020, CD-1 July 2021, operational ~2030

$$\sqrt{s} \sim 20 - 100 \text{ GeV}$$

e+p, e+O, e+Al, e+Cu, e+Au, e+U,...

Charm production inside the nucleus probes:

- Parton structure of nucleons
- Parton distribution function modifications
- QCD energy loss

Hadronization inside the nucleus becomes important

Vitev, 1912.10965

Filtering States with the Nucleus

Quarkonia is subject to breakup as it crosses the nucleus – suppression due to disruption of the Qar Q pair

- Larger (weakly bound) states sample a larger volume of the nucleus while passing through larger absorption cross section Arleo, Gossiaux, Gousset, Aichelin PRC 61 (2000) 054906
- Explains trends observed in fixed target data at FNAL, SPS
- Test idea via MC simulation of propagation through nucleus for three cases:
 - $\psi(2S)$ with radius 0.87 fm, compact X(3872) with radius 1 fm, molecular X(3872) with radius 7 fm

Relative modification of X(3872)/ $\psi(2S)$ at EIC

$$\frac{R_{eA}^{X(3872)}}{R_{eA}^{\psi(2S)}} = \frac{\sigma_{eA}^{X}}{\sigma_{eA}^{\psi}} / \frac{\sigma_{ep}^{X}}{\sigma_{ep}^{\psi}}$$

- Little difference in suppression between model of compact X(3872) and $\psi(2S)$, as expected.
- Large difference between model of molecular X(3872) and $\psi(2S)$.

X(3872) is only an example, model equally applicable for other exotics accessible at EIC

Summary

- Hadron spectroscopy is a thriving field. Quark model is expanding.
- Interactions of exotics with other particles give us new ways to probe and constrain their structure that cannot be accessed in B-decays
- Multiple future experimental facilities are on the horizon.

Los Alamos is supported by the US Dept. of Energy/Office of Science/Office of Nuclear Physics

BACKUPS

Exotic X(3872) in dense medium (PbPb)

Recombination of X(3872) at pT > 15 GeV?

Prompt X(3872)/ ψ (2S) = 1.10 ± 0.51 ± 0.53 in PbPb at 5 TeV Prompt X(3872)/ ψ (2S) \approx 0.1 in pp at 8 TeV

Exotic X(3872) in dense medium (PbPb)

CMS-PAS-HIN-19-005

Transport model gives larger yield for compact tetraquark vs. molecule by factor of ~2 in PbPb

Will be tested with future PbPb data sets.

Prompt X(3872)/ ψ (2S) = 1.10 ± 0.51 ± 0.53 in PbPb at 5 TeV Prompt X(3872)/ ψ (2S) \approx 0.1 in pp at 8 TeV

Intriguing data! Inconclusive with these uncertainties.

Propagation through Nuclei

- In Monte Carlo simulation, populate a Glauber nucleus, using parameters from PHOBOS model: arXiv:1408.2549
- Randomly select starting point for $Q\bar{Q}$ pair
- Propagate Q ar Q along z axis
- Following model of Arleo et al. in Phys Rev C, 61 054906 (2000), expand $Q\bar{Q}$ radius as a function of time:

$$r_{c\bar{c}}(\tau) = \begin{cases} r_0 + v_{c\bar{c}} & \tau & \text{if } r_{c\bar{c}}(\tau) \leq r_i \\ r_i & \text{otherwise} \end{cases}$$

- Calculate radius-dependent cross section: $\sigma_{(c\bar{c})_1N} = \sigma_{\psi N}(s) \cdot (r_{c\bar{c}}/r_{\psi})^2$
- If the state comes within a distance of $\sqrt{\sigma_{c\bar{c}}/\pi}$ to a nucleon, consider it disrupted.
- Three cases: $\psi(2S)$ with radius 0.87 fm, compact X(3872) with radius 1 fm, molecular X(3872) with radius 7 fm

Filtering States with the Nucleus

 At the EIC, hadronization inside the nucleus becomes an important effect (Vitev, 1912. 10965)

• Quarkonia is subject to breakup as it crosses the nucleus – suppression due to

disruption of the $Q\bar{Q}$ pair

NA50, EPJC 48 329 (2006)

- Explains trends observed in fixed target data at FNAL, SPS
- As expected, fails at RHIC (hadronization occurs outside nucleus)
 PHENIX PRL 111 202301 (2013)

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E [{ m GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

Satz hep-ph/0512217

Table 1: Charmonium states and binding energies

state	Υ	χ _{b0}	χ _{b1}	X _{b2}	Υ'	χ' ₆₀	χ'_{b1}	χ_{b2}'	Υ"
mass [GeV]	9.46	9.86	9.89	9.91	10.02	10.23	10.26	10.27	10.36
$\Delta E \; [{ m GeV}]$	1.10	0.70	0.67	0.64	0.53	0.34	0.30	0.29	0.20

Table 2: Bottomonium states and binding energies

Quarkonia in the QCD medium

Diffuse medium (pp,pA)

Increasing T, N_{charged}

Dense medium (pA, AA)

Experimentally, we use different collision systems/kinematic regions to prepare environments where different non-perturbative effects dominate.

Separate prompt/non-prompt production

Simultaneous fit to mass and proper time in each multiplicity bin

